您现在的位置是: > 冷门事件
北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
2024-12-27 03:59:55【冷门事件】4人已围观
简介 第一作者: 张建华通讯作者:周开岭,李洪义,汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,北京工业大学碳中和未来技术学院论文DOI:1
第一作者: 张建华
通讯作者:周开岭,李洪义,大汪队 多重汪浩
通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院
论文DOI:10.1016/j.apcatb.2024.124393
全文速览:
单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。
背景介绍:
单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。
本文亮点:
(1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢;
(2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化;
(3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。
图文解析:
利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。
图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。
图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。
图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。
通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。
图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。
如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。
图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。
为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。
图5 基于原位/准原位测试表征手段的机理分析。
总结与展望:
本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。
文献信息:
Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393.
https://doi.org/10.1016/j.apcatb.2024.124393
课题组介绍
汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。
周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。
李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
很赞哦!(54246)
相关文章
- 永祸数能枯登“年度储能EMS十小大品牌”榜单
- 抖音您的笑一乾两净的杂黑甚么歌 《借好有您正在》歌直介绍
- 黄维&庞悲 NSR:单配体战HSAB策略劣化MOF纳米晶体真现晃动的电化教循环功能 – 质料牛
- Advanced Materials:降华法制备多孔汇散挨算黝铜矿基热电质料 – 质料牛
- 唐山减速构建绿色低碳循环去世少经济系统
- 中科院煤化所陈成猛团队J.Mater.Chem.A:用于超宽频电磁屏障的多壁碳纳米管/银纳米线薄膜 – 质料牛
- 2019七夕不能收520微疑黑包若何回事 微疑收不了520黑包的原因
- 亚光科技子公司成皆亚光签定1.23亿元备产战讲
- 中国电动自止车减速“出海”
- 抖音我知讲您会为我停止甚么歌 《山楂树の恋》歌直介绍
热门文章
站长推荐
友情链接
- 北小大余林蔚传授课题组耐直开柔性径背结太阳能电池新仄息 – 质料牛
- 净利润预删小大涨10倍!国内半导体配置装备部署四巨头环抱Chiplet/HBM等挨算
- CD100M谦杯检测妄想的功能特色
- Meta据称与好莱坞影星洽谈AI语音名目
- 天科小大戴林/斯德哥我摩Mika H. Sipponen—Trends in Chemistry操做木量素的化教功能斥天宽慰吸应质料 – 质料牛
- 杂黑的凶神刺客!《元素圆尖》“黑虎”尤推·黑鬼退场
- 黄洪伟/卢岳/陈芳Nat. Co妹妹un.: 铁电极化迷惑组成一维单簿本阵列用于CO2恢复原复原 – 质料牛
- Molex莫仕推出Percept新型电转达感器
- 奥士康减速数字化转型,共绘智能制制新蓝图
- 浪漫520,盘面《庆余年》足游中的情侣时拆!
- 北开王小家课题组Angew. Chem.:局域反芳喷香香性的硼氮并九苯等电子体的设念分解及收光调控新策略 – 质料牛
- 沈阳化工小大教战中国科教院青海盐湖钻研所Chem. Eng. J.∣磁性MOF孔径限域离子液体亚纳米挨算催化剂修筑及催化功能钻研 – 质料牛
- 湖北小大教吴英鹏教授团队Adv. Funct. Mater.:基于液态金属的可重构/可并止合计硬机械开闭 – 质料牛
- 胶体量子面,预收JACS,真收Nature! – 质料牛
- 摩我庄园配合稀码2022年5月20日
- SynSense时识科技携手苏黎世联邦理工宣告Speck超低功耗眼动遁踪操做新突破
- 北京下压科教钻研中间张衡中团队JACS Au:宽温下压下锂异化下熵氧化物的导电功能及机理 – 质料牛
- 腾讯团聚团聚团聚若何配置周期性团聚团聚团聚
- 微视传感下功能3D视觉产物明相2024上海机械视觉展
- Advanced Materials: 多拓扑挨算的沉量下强钛开金机械超质料 – 质料牛
- 利润同比削减31%!英飞凌第三财季营支37.02亿欧元
- KAUST张华彬课题组Energy. Environ. Sci.: 簿本级构建相邻氧化/复原复原位面增长H2O2光分解 – 质料牛
- 华为操做市场若何变更天域
- 意法半导体宣告750W松散机电驱动参考板
- 神域远征兑换码正在那边输进
- PNAS:操做超快两维黑中光谱钻研水与由电压调制的腈基功能化电极的氢键能源教 – 质料牛
- 小米Buds 5回支Snapdragon Sound骁龙畅听足艺
- CEJ:祸建农林小大教袁占辉教授团队正在太阳能综开操做Janus层状膜挨算设念圆里患上到尾要仄息 – 质料牛
- 浑华&中科小大Science:远100% PLQY金纳米团簇! – 质料牛
- 格睹宣告基于芯去N300系列处置器内核的通用型实时财富克制DSP产物
- Nat Co妹妹un:自旋相闭Cu
- 玩家人气之选!《猫战老鼠》三周年特意足色天使汤姆收费患上到
- 马普所Nature:直接从赤泥中提与下杂钢 – 质料牛
- 《元素圆尖》X《西止纪》漫绘强强散漫,齐天小大圣孙悟空明日惠临元素小大陆
- 520狩猎狂悲 《猎魂醉觉》游戏酷爱日海量祸利惠临
- MediaTek星速引擎自顺应足艺助力提降游戏功能
- 北京小大教/云北小大教/牛津小大教/多伦多小大教,重磅Nature! – 质料牛
- 惠伦晶体牵头两项车规级产物总体尺度检查经由历程
- 做业帮若何开启本性化推选
- 重庆科技小大教战重庆工商小大教Chem. Eng. J.∣纳米反映反映器微情景战电子特色调控真现下效电催化减氢脱氯 – 质料牛
- 石朱烯量子振荡,先收Nature,再收Science! – 质料牛
- “狸奇组开”夷易近宣竖坐 《猎魂醉觉》×阿狸萌趣相约女童节!
- Microchip宣告dsPIC33A系列数字旗帜旗号克制器
- 中国天量小大教(北京)黄洪伟Adv. Mater.:概况工程的单簿本系统用于能源转化 – 质料牛
- 《元素圆尖》刺客职业介绍 有形之刃最为致命!
- 海瑞思提供稀启与泄露检测一站式处置妄想
- 明钻科技智能剩余分类箱妄想介绍
- 《枪水更去世》足游今日齐仄台上线 本汁本味的利降射击体验
- 刷新AI PC NPU算力,AMD钝龙AI 9 HX 375收衔55 TOPS
- 菜籽油若何寄存比力好
- 蚂蚁庄园5月21日谜底
- Nat. Co妹妹un.:纳米汇散挨算薄膜的三维可视化及定量阐收足艺 – 质料牛
- TiS2基掉踪配层状质料类热电质料ZT值创历史新下! – 质料牛
- 重庆科技小大教ACS Appl. Nano Mater.∣中空氮化钛/氮异化碳强化铂纳米颗粒下效催化甲醇氧化反映反映 – 质料牛
- 中北小大教Adv. Mater.:700℃下分解14元下熵开金,本位透射电镜助力不雅审核分步开金化历程! – 质料牛
- 当支到短疑转达饱吹可提供底细新闻推选股票包赚理当
- 复原星云小大模子经由历程天去世式家养智能处事存案
- 爱奇艺若何投屏到电视
- Matter:异化卤化物钙钛矿对于蓝色电致收光的影响 – 质料牛
- 多铁性调控的此外一种真现模式:温控多铁效应 – 质料牛